搜索

Coypright◎2012-2018 北京长城航空测控技术研究所      京ICP备09097201号-2

中国航空工业集团公司北京长城航空测控技术研究所《测控技术》杂志社版权所有
地址:北京市亦庄经济技术开发区经海二路航空工业科技商务园9号楼 邮编:101111 
编辑部:010-65667497;
广告部:010-65667357;

发行部:010-65667497;
网管部:010-65667357;

扫码关注微信公众号

本网站为《测控技术》指定官方网站

按应用领域分类

按应用领域分类

按应用领域分类

测控技术

功耗降低90%以上,韩国研发出基于斯格明子的人工突触组件
研华+瑞芯微:研华助力国产替换,锚点推出ARM-Based系列工业级产品
TwinCAT Wind 和超采样技术助力实现高效的风机状态监测
Bosch Sensortec BHI260AB和BHA260AB智能传感器中枢
从机器自动化到智慧城市,研华Edge AI推动实时边缘智能
罗德与施瓦茨展示5G NR FR1和FR2信令测试
研华推出应用于工业物联网领域FPM-1150G工业显示器
新思科技推出全新ARC HS4x/4xD开发套件

知识工程

微视频

集智达智能工业互联网解决方案
发布时间:
2020-04-09 14:02
COHDA WIRELESS C-V2X评估套件解决方案已为试验性部署做好了充分准备
STMicroelectronics STM32L5超低功耗MCU提升安全防御能力
高效、易配置的 DALI-2 照明解决方案
Achronix采用新思科技DesignWare IP解决方案加速高性能数据以及FPGA的开发
Qorvo QPF7219 Wi-Fi集成前端集成edgeBoost功能以扩大Wi-Fi 6覆盖范围
以AI当靠山大幅提升散热片质量检测效率
利用PicoScope的高级触发功能高效捕获RFID卡调制信号

测控技术

知识工程

微视频

集智达智能工业互联网解决方案
发布时间:
2020-04-09 14:02
COHDA WIRELESS C-V2X评估套件解决方案已为试验性部署做好了充分准备
STMicroelectronics STM32L5超低功耗MCU提升安全防御能力
高效、易配置的 DALI-2 照明解决方案
Achronix采用新思科技DesignWare IP解决方案加速高性能数据以及FPGA的开发
Qorvo QPF7219 Wi-Fi集成前端集成edgeBoost功能以扩大Wi-Fi 6覆盖范围
以AI当靠山大幅提升散热片质量检测效率
利用PicoScope的高级触发功能高效捕获RFID卡调制信号

测控技术

知识工程

微视频

中国航空工业集团公司   中航高科智能测控有限公司  北京瑞赛长城航空测控技术有限公司   中国航空工业技术装备工程协会  中国航空学会

中国航空工业集团公司北京长城航空测控技术研究所 《测控技术》杂志社版权所有
地址:北京市亦庄经济技术开发区经海二路航空工业科技商务园9号楼 邮编:101111 
编辑部:010-65667497;
广告部:010-65667357;

发行部:010-65667497;
网站管理部:010-65665345

为控制系统提供开放、实时且无缝集成的机器学习

浏览量
【摘要】:
倍福现在可以提供机器学习(ML)解决方案,它可以被无缝集成到 TwinCAT 3 软件中。TwinCAT 3 Machine Learning 基于成熟的标准,让机器学习应用领域也能享受基于 PC 的控制系统的开放性优势。此外,TwinCAT 解决方案还支持实时机器学习,能够处理运动控制等要求更严苛的任务。这些功能通过如预测性维护、过程自优化和过程异常的自动检测等功能,为设备制造商提升设备性能提供

[2019年4月1日,德国] 倍福现在可以提供机器学习(ML)解决方案,它可以被无缝集成到 TwinCAT 3 软件中。TwinCAT 3 Machine Learning 基于成熟的标准,让机器学习应用领域也能享受基于 PC 的控制系统的开放性优势。此外,TwinCAT 解决方案还支持实时机器学习,能够处理运动控制等要求更严苛的任务。这些功能通过如预测性维护、过程自优化和过程异常的自动检测等功能,为设备制造商提升设备性能提供最佳基础。

机器学习的基本概念是不再遵循为特定任务设计解决方案然后将这些解决方案转化为算法的传统工程思想,而是从样板性的过程数据中学习所需的算法。通过这种替代方法来训练强大的机器学习模型,以提供更高级或性能更佳的解决方案。在自动化技术方面,这样可以为许多领域开辟新的可能性和优化潜力,包括预测性维护和过程控制、异常检测、协作机器人、全自动质量控制及机器优化。 

需要学习的模型在机器学习框架(如 MATLAB®或 TensorFlow)中进行训练,然后通过开放式神经网络交换(ONNX)格式导入到 TwinCAT 运行时,ONNX 是一个用于表示深度学习模型的标准化数据交换格式。TwinCAT 实时核为实现此目的包含以下新功能: 

- 用于传统机器学习算法的 TwinCAT 3 Machine Learning Inference Engine,如支持向量机(SVM)和主成分分析(PCA)
- 用于深度学习和神经网络的 TwinCAT 3 Neural Network Inference Engine,如多层感知器(MLP)和卷积神经网络(CNN)

可以实时直接执行模型结果

TwinCAT TcCOM 对象可以实时直接执行推理,即训练好的机器学习模型的执行。对于较小的网络,支持响应时间小于 100 μs 的系统,相对应于 TwinCAT 周期时间 50 μs。可以通过 PLC、C/C ++ TcCOM 接口或循环任务调用模型。 

通过与控制技术的无缝集成,TwinCAT 3 支持多核系统的特点也可用于机器学习应用。这意味着,例如,不同的任务情境可以访问某个特定的 TwinCAT 3 Inference Engine,而不会互相制约。也可以完全访问 TwinCAT 中可用的所有现场总线接口和数据。这使得机器学习解决方案可以使用大量数据,例如,用于复杂的传感器数据融合(数据合并),这也意味着可以使用致动器的实时接口来实现最佳控制。 

新闻图片

 

图片注释:

借助 TwinCAT 3 软件,自动化专家们可以在熟悉的开发环境中挖掘新的机器学习和深度学习的可能性。

 

知识工程

按照应用领域分类

按照技术领域分类

视频展示

相关文件

暂时没有内容信息显示
请先在网站后台添加数据记录。